Isolation and Biological Activity of Thielocins: Novel Phospholipase A₂ Inhibitors Produced by *Thielavia terricola* RF-143

Koichi Matsumoto,* Kazushige Tanaka, Shigeru Matsutani, Ryuji Sakazaki, Hiroshi Hinoo, Nobuo Uotani, Tatsuo Tanimoto, Yoshimi Kawamura, Shozo Nakamoto, and Tadashi Yoshida

Shionogi Research Laboratories, Shionogi & Co., Ltd., 12-4, Sagisu 5-chome, Fukushima-ku, Osaka 553, Japan

(Received for publication September 7, 1994)

Thielocins A2 α , A2 β , A3, B1, B2 and B3 were isolated as a novel family of phospholipase A₂ inhibitors from the fermentation broth of *Thielavia terricola* RF-143 together with thielavins and thielocins A1 α and A1 β . The most potent inhibitory activity (IC₅₀=0.0033 μ M) against rat group II phospholipase A₂ was shown by thielocin A1 β . Against human group II phospholipase A₂, thielocin B3 (IC₅₀=0.076 μ M) was the most potent.

Phospholipase A_2 (PLA₂) is a lipolytic enzyme which hydrolyzes the sn-2 fatty acyl ester bond of phospholipids to produce free fatty acids and lysophospholipids¹). It exists in both extracellular and intracellular forms²). To date, two different extracellular PLA₂s have been identified based on their primary structures³⁾: a pancreatic type (group I)⁴⁾ and a nonpancreatic "synovial" type (group II)⁵⁾. Mammalian group I PLA₂ (PLA₂-I) is an important enzyme present in abundance in the digestive secretion of the pancreas⁶, while mammalian group II PLA₂ (PLA₂-II) is found in inflammatory regions, such as casein-induced peritoneal fluid in rats⁷⁾, carrageenan-induced pleural exudate in rats⁸⁾ and synovial fluid of patients with rheumatoid arthritis⁹⁾. These findings strongly implicate mammalian PLA₂-II as promoting inflammatory processes. In fact, some studies have shown the proinflammatory activities of PLA₂-II^{10~12}). However, the pharmacological characterization and an understanding of the possible pathological roles of extracellular PLA₂s requires the development of the potent and specific inhibitors¹³⁾.

By using rat PLA₂-II, we searched for a specific inhibitor of PLA₂-II from culture filtrates of microorganisms and found thielocin A1 β from the fermentation broth of *T. terricola* RF-143¹⁴⁾. Thielocin A1 β inhibited various PLA_{2S} in a dose-dependent manner. Among them, rat PLA₂-II was most sensitive to thielocin A1 β (IC₅₀=0.0033 μ M)¹⁵⁾. During further screening studies against the fermentation broth of *T. terricola* RF-143, we isolated several minor components as novel PLA₂ inhibitors together with the thielavins¹⁶⁾. Their fermentation, isolation, and physico-chemical and biological characterization are described in this paper.

Materials and Methods

Materials

L-3-Phosphatidylethanolamine, 1-palmitoyl-2-[1-¹⁴C]linoleoyl (2.18 GBq/mmol) was purchased from Amersham Corp. L- α -Phosphatidylethanolamine (from egg yolk), *p*-bromophenacyl bromide (*p*-BPB), mepacrine were purchased from Sigma. Manoalide was purchased from Wako Pure Chemical (Japan). Rat PLA₂-II was purified from rat platelets¹⁷⁾. All other reagents were of analytical grade or better.

Chemistry

Melting points were determined on a Yanagimoto microscope hot-stage apparatus and are uncorrected. Ultraviolet spectra were taken on a Hitachi 323 spectrometer, infrared (IR) spectra (KBr pellet) on a Jasco DS-403G spectrometer, mass spectra on a Hitachi M-90 mass spectrometer, and proton nuclear magnetic resonance spectra on a Varian XL-400 spectro-meter in CDCl₃ solution with TMS as an internal standard. TLC was performed on pre-coated Silica gel $60F_{254}$ plates (E. Merck).

Fermentation

A slant culture of strain RF-143 was inoculated into a 2-liter Erlenmeyer flask containing one liter of a seed medium consisting of glucose 2.0%, polypepton 1.0%, beef extract 0.3%, yeast extract 0.2% and NaCl 0.1%. The flask was shaken at 28° C for three days on a rotary shaker at 180 rpm. One liter of the culture was transferred to a 30-liter jar fermentor containing 18 liters of the seed medium. The culture was incubated at 28° C for one day under agitation at 250 rpm and aeration of 10.8 liters per minute. For the production of thielocins 14 liters of the resulting culture fluid was transferred into 500-liter fermentor containing 350 liters of a medium consisting of soluble starch 2.0%, sucrose 2.0%, yeast extract 0.5% in tap water and fermentation was carried out at 28°C for eight days under agitation at 320 rpm and aeration of 180 liters per minute. The back pressure of the fermentor was set at 0.35 kg/cm^2 . All of the media preparations described above, pH of the medium was not adjusted. The time course of the production of thielocin A1 β is shown in Fig. 1. The amount of thielocin A1 β in the cultured broth was determined by analytical HPLC (Rt = 10 minutes; column: Cosmosil 5C₁₈-AR, $4.6 \times 150 \text{ mm}$; solvent: 57% CH₃CN in 0.1% H₃PO₄: flow rate: 1.0 ml/minute; detection: 220 nm).

Isolation and Purification

The isolation procedure for the thielocins is outlined in Fig. 2. Fractionation was guided by biological assay against rat PLA_2 -II as described previously¹⁸⁾. The mycelial cake was obtained by filtration of the harvest broth (356 liters) after adjustment to pH 2.5 with dil. HCl and extracted with acetone (108 liters). The acetone extract Fig. 1. Time course of thielocin A1 β production.

The amount of thielocin A1 β (\Box), pH of the medium (\blacktriangle) and % of thielocin A1 β in packed cell volume (PCV; \bullet) were measured for eight days.

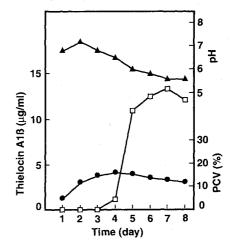
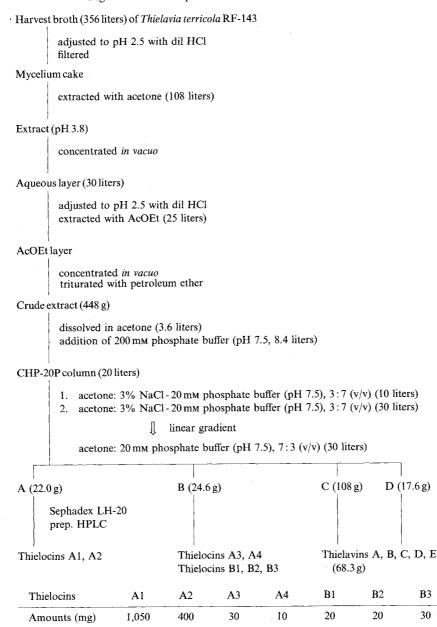



Fig. 2. Isolation procedure for thielocins and thielavins.

was then concentrated in vacuo at pH 3.8. The resulting aqueous solution was extracted with ethyl acetate (25 liters) at pH 2.5. The AcOEt layer was concentrated in vacuo and the residue was triturated with petroleum ether to give a crude extract (448 g) which was then dissolved in a solvent mixture consisting of acetone (3.6 liters) and 20 mM phosphate buffer (PB; 20 mM Na₂HPO₄ was adjusted to pH 7.5 by 2 N HCl) (8.4 liters). The resulting solution was applied to a CHP-20P column (20 liters) which was packed and equilibrated with the same solvent mixture used to dissolve the crude extract. The column was eluted first with an eluent consisting of three volumes of acetone and seven volumes of 20 mM PB (pH 7.5) containing 3% NaCl (solvent A, 10 liters) and then eluted by linear gradient from solvent A (30 liters) to a solvent consisting of seven volumes of acetone and three volumes of 20 mM PB (pH 7.5) containing 3% NaCl (30 liters). The active fractions were divided into four fractions which were separately concentrated to give the partially purified fractions A, B, C and D. Each of the active fractions was further purified with a Sephadex LH-20 column developed with MeOH and then by preparative HPLC (column: YMC AP-324 s15/30 300A ODS, 50×500 mm, solvent; 70% CH₃CN in 0.1% H₃PO₄ for thielocins A1, B1, B2, 80% CH₃CN in 0.1% H_3PO_4 for A2 and B3). Each of the active fractions was concentrated and extracted with AcOEt to give pure thielocins A1 (1,050 mg) and A2 (400 mg) from fraction A, thielocins A3 (30 mg), A4 (10 mg), B1 (20 mg), B2 (20 mg) and B3 (30 mg) from fraction B, and thielavins A through E (68.3 g) from fractions C and D. Thielocin A1 fraction consisted of two isomers which were separated into thielocin A1 α (220 mg) and A1 β (830 mg) by preparative HPLC. Thielocins A2 α and A2 β were separated by preparative HPLC (column: YMC AP-324 s15/30 300A ODS, 50 × 500 mm; solvent: 68% CH₃CN in 0.1% H₃PO₄) to give pure A2 α (164 mg) and A2 β (236 mg). Thielavins A, B, C, D and E were separated by silica gel chromatography (Silica gel 60; Merck) eluted

with AcOEt - MeOH (0 \rightarrow 50%) and then with preparative HPLC using Nucleosil 7C₁₈ (20 × 200) developed in a linear gradient from 55% CH₃CN in 0.1% H₃PO₄ to 70% CH₃CN in 0.1% H₃PO₄. Each of the active fractions was concentrated *in vacuo* and extracted with AcOEt to give thielavins A (0.710 g), B (50.35 g), C (12.01 g), D (0.81 g) and E (4.33 g).

Assay of Phospholipase A₂

PLA₂ activity was measured by a method described previously¹⁵⁾. The substrate was prepared by diluting 1-palmitoyl-2-[1-14C]linoleoyl phosphatidylethanolamine with L-α-phosphatidylethanolamine to the specific activity of 2,000 dpm/nmol. The reaction was started by addition of the enzyme. The amount of PLA₂s was adjusted to optimize linear kinetics for quantitation, *i.e.*, hydrolysis of the substrate was less than 20% in all experiments. Thielocins and other compounds were added to the assay tubes as a DMSO solution (2% of the final volume), using a DMSO-enzyme control. Control experiments showed that DMSO at this concentration had no effect on enzymatic activities. IC_{50} values were determined graphically from plots of percent inhibition, that were obtained from three independent experiments, each performed in duplicate, versus log concentration of test compounds.

Results

Taxonomy

The taxonomic properties of the strain RF-143 which produced the novel PLA_2 inhibitors can be summarized as follows. The vegetative hypha of strain RF-143 is macroscopically white in color on corn meal agar medium. The ascocarp which forms on the surface of the agar medium is spherical in shape and brownish black in color. It is 100 to 300 μ m in diameter, and the textural

	Α1α	Α1β	Α2α	Α2β	A3
Appearance	Colorless powder	Colorless powder	Colorless powder	Colorless powder	Colorless powder
MP	$203 \sim 206^{\circ} C$	$203 \sim 206^{\circ} C$	203~206°C	204~206°C	$202 \sim 205^{\circ}C$
MW (MH ⁺ ; HR-MS)					
Found:	997.3861	997.3856	1175.4479	1175.4488	1175.4488
Calcd:	997.3854	997.3854	1175.4483	1175.4483	1175.4470
Molecular formula	$C_{54}H_{60}O_{18}$	C54H60O18	$C_{64}H_{70}O_{21}$	$C_{64}H_{70}O_{21}$	$C_{64}H_{70}O_{21}$
UV (nm (ε))			01 10 21	01 70 21	04 /0 21
(MeOH and			274.6 (25,100),	274.5 (22,900, sh),	274.5 (22,512),
dil HCl-MeOH)			316.7 (5,380)	321 (4,520)	318.6 (5,232)
(dil NaOH - MeOH)			260 (sh),	260 (sh),	255 (sh),
			323.3 (52,800)	323 (51,300)	323 (29,825)
IR (KBr, cm^{-1})	3490, 1740, 1675	3440, 1744, 1675,	3440, 1740, 1605,	3420, 1745, 1605,	3440, 1743, 1657,
	1577, 1155, 1095	1575, 1150, 1095	1574, 1150, 1090	1572, 1147, 1090	
HPLC (Rt)	7.0 ^a	4.4 ^a	9.7ª	6.6 ^a	16.9 ^b
× ,					

Table 1. Physico-chemical properties of thielocins A1 α , A1 β , A2 α , A2 β and A3.

^a Nucleosil 5C₁₈, CH₃CN: 0.1% H₃PO₄ (69:31), detection; 230 nm (UV).

⁹ Nucleosil $5C_{18}$, 60% aq CH₃CN containing 0.1% H₃PO₄.

	B 1	B2	B3
Appearance	Colorless powder	Colorless powder	Colorless powder
MP	$175 \sim 182^{\circ}C$	$180 \sim 186^{\circ} C$	194~197°C
MW (MH ⁺ ; HR-MS)			
Found:	967.3754	967.3751	1131.4226
Calcd:	967.3749	967.3749	1131.4222
Molecular formula	$C_{53}H_{58}O_{17}$	$C_{53}H_{58}O_{17}$	$C_{62}H_{66}O_{20}$
UV (nm (ε))			
(MeOH and dil HCl-MeOH)	275 (24,150), 323 (5,120)	245 (24,830, sh), 325 (3,579)	276 (39,760), 306 (11,690, sh)
(dil NaOH - MeOH)	248 (21,250, sh), 331 (32,650)		
IR (KBr, cm^{-1})	3424, 1742, 1659, 1610, 1152, 1096	3440, 1775, 1734, 1665, 1610, 1150	3410, 1740, 1650, 1610, 1143, 1094
TLC (KGF plate)			
(Chf: MeOH, 2:1)	0.08	0.06	0.06
(Chf: EtOH: 10% AcOH, 4:7:2)	0.72	0.52	0.49
HPLC ^a (Rt)	5.0	3.0	7.2

Table 2. Physico-chemical properties of thielocins B1, B2 and B3.

^a Cosmosil ODS-AR, 80% aq CH₃CN containing 0.1% H₃PO₄, detection: 230 nm (UV).

epidermoidea of the outer wall is brown. The ascus is $30 \sim 35 \times 15 \sim 17 \,\mu\text{m}$ in size and is pyriform. The ascus which dissolves when matured, contains eight ascospores. The ascospores are broadly fusiform, olive to brownish gray in color, and $12 \sim 18 \times 6 \sim 8 \,\text{mm}$ in size, with a germ pore at one end. The imperfect stage is absent. Based on these taxonomic properties, strain RF-143 was identified as *T. terricola*^{19,20}. It has been deposited with the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Japan, under the accession No. FERM BP-2196.

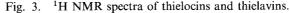
Physico-chemical Properties

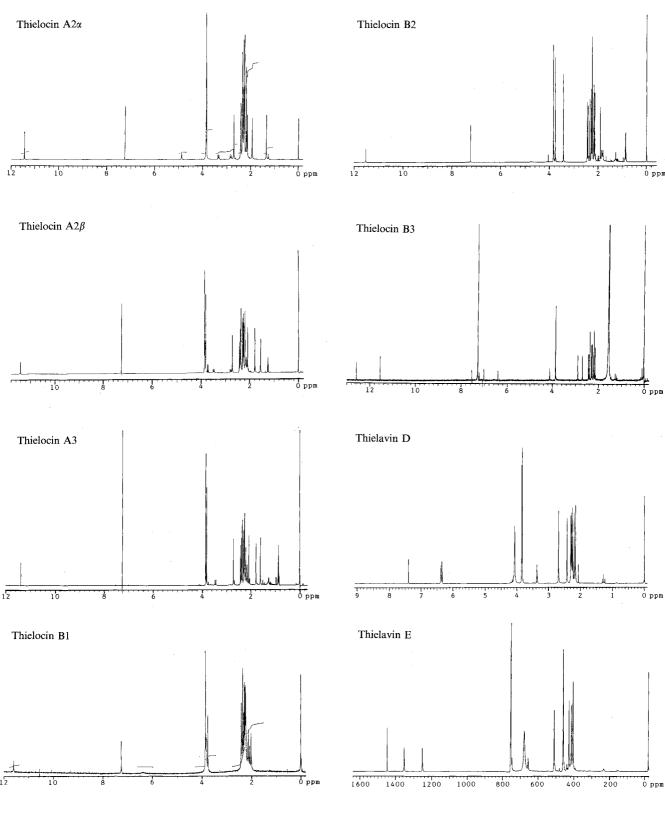
The physico-chemical properties of thielocins are summarized in Tables 1, 2 and 3, and the ¹H NMR spectra are presented in Fig. 3. The structures of the thielocins were determined on the basis of the results of chemical degradation and spectroscopic characteristics as will be described in a separate paper. Thielavins A, B and C were identified according to the reported spectroscopic properies while thielavins D and E were found to be new compounds with closely related structures¹⁶.

Inhibition of Rat and Human Group II PLA₂ by Thielocins

We have already reported that thielocin A1 β inhibited various extracellular PLA_{2S} in a dose-dependent manner. Among these, rat PLA₂-II was most sensitive to thielocin A1 β^{15} . As shown in Table 4, all other thielocins (thielocin A2 α , A2 β , A3, B1, B2 and B3) inhibited rat PLA₂-II more strongly than well-known PLA₂ inhibitors

Table 3.	Physico-chemical	properties of	thielavins D	and E.
----------	------------------	---------------	--------------	--------


	D	E	
Appearance	Colorless powder	Colorless powder	
Molecular formula	$C_{30}H_{32}O_{10}$	$C_{30}H_{32}O_{10}$	
MW (MH ⁺ ; SI-MS)	553	553	
MP	235~238°C	$217 \sim 220^{\circ} C$	
UV $(nm (\varepsilon))$			
(MeOH)	269.5 (23,110),	275.9 (26,236),	
	303.3 (7,590)	305.0 (5,935)	
(dil HCl-MeOH)	270.0 (23,050),	276.1 (24,679),	
	302.0 (46,417)	314.5 (43.205)	
Rf value ^a	0.21	0.21	
HPLC (Rt) ^b	7.90	10.2	
Solubility			
Soluble	MeOH, EtOH, DMSO, Acetone, Pyridine, AcOEt, CHCl ₃		
Insoluble	Petroleum ether,	, ,	
Slightly soluble	Benzene		


^a Silica gel (Merk), AcOEt: MeOH, 2:1.

^b Nucleosil $5C_{18}$ (4.6×150 mm), 58% aq CH₃CN containing 0.1% H₃PO₄; flow rate 1.8 ml/minute, detected at 230 nm.

(mepacrine, *p*-BPB and manoalide). Nevertheless, thielocin A1 β showed the most potent inhibitory activity against rat PLA₂-II (IC₅₀ = 0.0033 μ M). We have reported also that thielocin A1 β showed weaker inhibitory activity against human PLA₂-II than rat PLA₂-II. As shown in Table 4, all other thielocins (thielocin A2 α , A2 β , A3, B1, B2 and B3) showed stronger inhibitory activity against human PLA₂-II than thielocin A1 β and other PLA₂ inhibitors (mepacrine, *p*-BPB and manoalide). The strongest inhibition of human PLA₂-II among the thielocins was observed with thielocin B3 (IC₅₀=0.076 μ M).

THE JOURNAL OF ANTIBIOTICS

Discussion

Our data demonstrated that all the thielocins studied showed strong inhibitory activity against rat PLA₂-II (Table 4), the most potent being thielocin A1 β (IC₅₀ 0.0033 μ M). As already reported, its inhibition was independent of both Ca²⁺ and substrate concentration and was also not affected by the substrate form

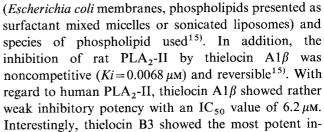


Table 4. Inhibition of rat and human group II PLA_2 by thielocins.

Compounds	IC ₅₀ (µм)		
Compounds	Rat	Human ^a	
Thielocin			
$A1\beta$	0.0033	6.2	
Α2α	0.051	0.31	
$A2\beta$	0.038	0.24	
A3	0.032	0.39	
B1	0.0078	0.17	
B2	0.070	2.7	
B 3	0.012	0.076	
Thielavin			
Α	43	29	
В	1.3	2.4	
С	0.46	2.1	
D	1.1	6.2	
Е	4.5	9.3	
Mepacrine	320	76	
p-BPB ^b	6.7	34	
Manoalide ^b	2.0	1.5	

^a Recombinant human group II PLA₂ was used.

^b Both *p*-BPB and manoalide were preincubated with enzyme for 20 minutes at 37°C (pH 7.4).

hibitory activity (IC₅₀=0.076 μ M) against human PLA₂-II among those studied (Table 4). Furthermore, the double reciprocal plot showed that thielocin B3 and thielocin A1 β behaved kinetically as noncompetitive inhibitors for human PLA₂-II with *Ki* values of 0.098 μ M and 12 μ M, respectively. Thus, thielocin B3 showed 120 times higher affinity for human PLA₂-II than thielocin A1 β^{21} .

Several lines of evidence have suggested that PLA₂-II plays an important role in the pathogenesis of inflammatory disease¹³⁾. In addition, some inflammatory cytokines and lipopolysaccharides dramatically increase PLA₂-II secretion in several tissues of rat through enhancement of gene transcription^{22, 23)}. Thus, PLA₂-II seems to participate in the development and possibly in the propagation of inflammatory processes. If such is the case, one might anticipate that inhibition of PLA2-II would attenuate the severity of inflammation. Recently, we have reported⁸⁾ that at 5 hours after coinjection of thielocin A1 β with carrageenan in the pleural cavity of rat, both the number of leukocytes and the amount of protein in the exudate had significantly decreased, and the exudate volume in the pleural cavity had decreased dose dependently (ED₅₀ = 0.54 mg/kg). Furthermore, PLA₂-II activity in the pleural exudate was decreased $(IC_{50}=0.060 \text{ mg/kg})$ by coadministration of thielocin A1 β . The decrease in PLA₂-II activity after various doses of thielocin A1 β correlated well with the reduction in the exudate volume (r = 0.85, P < 0.01). These findings suggest that thielocin A1 β possesses antiinflammatory activity, and its mechanism of action may contribute to the inhibitory activity of group II PLA₂. Of interest is the finding that thielocin B3, the most potent inhibitor against human PLA₂-II among the family of thielocins,

also significantly decreased the exudate volume in the pleural cavity and PLA_2 -II activity in the pleural exudate in a dose-dependent manner²¹. Recently, KAKUTANI *et al.*²⁴) reported that intravenous injection of the antibody, which inhibits the catalytic activity of PLA_2 -II, significantly reduced both the pleural exudate volume and the leukocyte numbers in the pleural cavity. These observations indicate the important role of PLA_2 -II in the pathogenesis of acute inflammation in the rat carrageenan-induced pleurisy model. However, this model might be far from the clinical situation. Hence, studies are in progress on the physiological role of extracellular PLA_2 in the progression of inflammatory

Acknowledgments

processes in animal models that more exactly reflect

the clinical situation using thielocins.

We wish to thank Professor KEIZO INOUE, University of Tokyo, for the generous supply of the anti-rat platelet derived PLA_2 monoclonal antibody. We also thank Dr. HITOSHI ARITA, Shionogi Research Laboratories, for the supply of human recombinant PLA_2 -II. We are grateful to Mr. K. HASHIMOTO and Ms. S. CHIKAZAWA of our laboratories for their technical assistance.

References

- DENNIS, E. A.: Phospholipases. In The Enzymes. Vol. 16. Ed., P. D. BOYER, pp. 307~353, Academic Press, 1983
- VAN DEN BOSCH, H.: Intracellular phospholipase A. Biochim. Biophys. Acta 604: 191~246, 1980
- HEINRIKSON, R. L.; E. T. KRUEGER & P. S. KEIM: Amino acid sequence of phospholipase A₂-α from the venom of *Crotalus adamanteus*. A new classification of phospholipase A₂ based upon structural determinants. J. Biol. Chem. 252: 4913~4921, 1977
- VADAS, P. & W. PRUZANSKI: Biology of disease. Role of secretory phospholipase A₂ in the pathobiology of disease. Lab. Invest. 55: 391~404, 1986
- 5) KRAMER, R. M.; C. HESSION, B. JOHANSEN, G. HAYES, P. MCGRAY, E. P. CHOW, R. TIZARD & R. B. PEPINSKI: Structure and properties of a human non-pancreatic phospholipase A₂. J. Biol. Chem. 264: 5768 ~ 5775, 1989
- NEVALAINEN, T. J.: Review: the role of phospholipase A in acute pancreatitis. Scand. J. Gastroenterol. 15: 641~650, 1980
- CHANG, H. W.; I. KUDO, M. TOMITA & K. INOUE: Purification and characterization of extracellular phospholipase A₂ from peritoneal cavity of caseinate-treated rat. J. Biochem. 102: 147~154, 1987
- 8) TANAKA, K.; T. KATO, K, MATSUMOTO & T. YOSHIDA: Antiinflammatory action of thielocin A1 β , a group II phospholipase A₂ specific inhibitor, in rat carrageenaninduced pleurisy. Inflammation 17: 107~119, 1993
- 9) PRUZANSKI, W.; K. SCOTT, G. SMITH, I. RAJKOVIC, E. STEEANSKI & P. VADAS: Enzymatic activity and immunoreactivity of extracellular phospholipase A₂ in inflammatory synovial fluids. Inflammation 16: 451~457, 1992
- 10) VISHWANATH, B. S.; A. A. FAWZY & R. C. FRANZON: Edema-inducing activity of phospholipase A_2 purified

from human synovial fluid and inhibition by aristolochic acid. Inflammation 12: $549 \sim 561$, 1988

- VADAS, P.; W. PRUZANSKI, J. KIM & V. FORNASIER: The proinflammatory effect of intra-articular injection of soluble human and venom phospholipase A₂. Am. J. Pathol. 134: 807~811, 1989
- 12) BOMALASKI, J. S.; P. LAWTON & J. L. BROWNING: Human extracellular recombinant phospholipase A_2 induces an inflammatory response in rabbit joints. J. Immunol. 146: 3904 ~ 3910, 1991
- TANAKA, K. & H. ARITA: Secretory phospholipase A₂ inhibitors. Possible new antiinflammatory agents. Agents Actions : Supplements in press.
- 14) YOSHIDA, T.; S. NAKAMOTO, R. SAKAZAKI, K. MATSU-MOTO, Y. TERUI, T. SATO, H. ARITA, S. MATSUTANI, K. INOUE & I. KUDO: Thielocin A1 α and A1 β , novel phospholipase A₂ inhibitors from ascomycetes. J. Antibiotics 44: 1467~1470, 1991
- 15) TANAKA, K.; S. MATSUTANI, K. MATSUMOTO & T. YOSHIDA: A novel type of phospholipase A_2 inhibitor, thielocin A1 β , and mechanism of action. J. Antibiotics 45: 1071~1078, 1992
- 16) KITAHARA, N.; H. HARUYAMA, T. HATA & S. TAKAHASHI: The structures of thielavins A, B and C. Prostaglandin synthetase inhibitors from funji. J. Antibiotics 36: 599~600, 1983
- 17) MURAKAMI, M.; I. KUDO, Y. NATORI & K. INOUE:

Immunochemical detection of 'platelet type' phospholipase A_2 in rat. Biochim. Biophys. Acta 1043: $34 \sim 42$, 1990

- 18) TANAKA, K.; H. ITAZAKI & T. YOSHIDA : Cinatrins, a novel family of phospholipase A_2 inhibitors. II. Biological activities. J. Antibiotics 45: $50 \sim 55$, 1992
- EMNOS, C. W.: Coninothyrium fericola proves to be a species of Thielavia. Bull. Torrey Bot. Club. 59: 123~127, 1930
- 20) BOOTH, C.: Studies of Pyrenomycetes: VI. *Thielavia* with notes on some allied genera. Mycol. Papers: 83, Common wealth Mycological Institute, Kew, Surrey, England. 1961
- TANAKA, K.; S. MATSUTANI, A. KANDA, T. KATO & T. YOSHIDA: Thielocin B3, a novel antiinflammatory human group II phospholipase A₂ specific inhibitor from ascomycetes. J. Antibiotics 47: 631~638, 1994
- 22) NAKANO, T.; O. OHARA, H. TERAOKA & H. ARITA: Group II phospholipase A_2 mRNA synthesis is stimulated by two distinct mechanisms in rat vascular smooth muscle cells. FEBS Lett. 261: 171~174, 1990
- OKA, S. & H. ARITA: Inflammatory factors stimulate expression of group II phospholipase A₂ in rat cultured astrocytes. Two distinct pathways of the gene expression. J. Biol. Chem. 266: 9956~9960, 1991
- 24) KAKUTANI, M.; M. MURAKAMI, H. OKAMOTO, I. KUDO & K. INOUE: Role of type II phospholipase A_2 in the inflammatory process of carrageenan-induced pleurisy in rats. FEBS Lett. 339: $76 \sim 78$, 1994